A comparative study of Multi-Objective Ant Colony Optimization algorithms for the Time and Space Assembly Line Balancing Problem
نویسندگان
چکیده
Assembly lines for mass manufacturing incrementally build production items by performing tasks on them while flowing between workstations. The configuration of an assembly line consists of assigning tasks to different workstations in order to optimize its operation subject to certain constraints such as the precedence relationships between the tasks. The operation of an assembly line can be optimized by minimizing two conflicting objectives, namely the number of workstations and the physical area these require. This configuration problem is an instance of the TSALBP, which is commonly found in the automotive industry. It is a hard combinatorial optimization problem to which finding the optimum solution might be infeasible or even impossible, but finding a good solution is still of great value to managers configuring the line. We adapt eight different Multi-Objective Ant Colony Optimization (MOACO) algorithms and compare their performance on ten well-known problem instances to solve such a complex problem. Experiments under different modalities show that the commonly used heuristic functions deteriorate the performance of the algorithms in time-limited scenarios due to the added computational cost. Moreover, even neglecting such a cost, the algorithms achieve a better performance without such heuristic functions. The algorithms are ranked according to three multi-objective indicators and the differences between the top-4 are further reviewed using statistical significance tests. Additionally, these four best performing MOACO algorithms are favourably compared with the Infeasibility Driven Evolutionary Algorithm (IDEA) designed specifically for industrial optimization problems. © 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Including different kinds of preferences in a multi-objective ant algorithm for time and space assembly line balancing on different Nissan scenarios
Most of the decision support systems for balancing industrial assembly lines are designed to report a huge number of possible line configurations, according to several criteria. In this contribution, we tackle a more realistic variant of the classical assembly line problem formulation, time and space assembly line balancing. Our goal is to study the influence of incorporating user preferences b...
متن کاملA cost-oriented model for multi-manned assembly line balancing problem
In many real world assembly line systems which the work-piece is of large size more than one worker work on the same work-piece in each station. This type of assembly line is called multi-manned assembly line (MAL). In the classical multi-manned assembly line balancing problem (MALBP) the objective is to minimize the manpower needed to manufacture one product unit. Apart from the manpower, othe...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملSolving a multi-objective mixed-model assembly line balancing and sequencing problem
This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...
متن کاملSimultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing
This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 2013